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A B S T R A C T

The C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) may be of therapeutic potential in motor
impairments associated with Parkinson disease (PD). Since depression is a common co-morbid condition with
PD, we undertook this study to determine whether Hc-TeTx might also show antidepressant-like properties and
whether central brain-derived neurotrophic factor (BDNF) and/or tumor necrosis factor (TNF)-alpha are also
affected by it. Adult male Wistar-Kyoto rats, a putative animal model of depression, were treated with various
doses of Hc-TeTx (0, 20, 40 and 60 μg/kg, IM) and their performance in the open field locomotor activity (OFLA)
as well as in the forced swim test (FST) was evaluated at 24 h, one week and two weeks after the single injection.
A separate group of rats were injected with 60 μg/kg Hc-TeTx and sacrificed 24 h later for neurochemical
evaluations. Hc-TeTx resulted in a dose-dependent decrease in immobility score after 24 h, whereas OFLA was
not affected. Concomitant with the 24 h behavioral effects, the levels of hippocampal and frontal cortical BDNF
were significantly increased, whereas the levels of TNF-alpha in both these areas were significantly decreased.
The decrease in immobility scores following higher doses of Hc-TeTx were still evident after one week, but not 2
weeks of rest. These results indicate long lasting antidepressant effects of a single Hc-TeTx dose and suggest
potential utility of Hc-TeTx in PD-depression co-morbidity.

The toll extracted by clinical depression, characterized by a de-
spondent feeling, loss of interest in pleasurable activities, guilt,
worthlessness, and trouble concentrating, is of immense medical con-
cern. This is because the prevalence is relatively high. In US alone,
approximately 16 million people or 7% of the adults are afflicted with
major depressive disorder, which may also include abnormalities in
appetite and sleep and loss of productivity and suicidal ideation. The
actual suicide rate, estimated at 1 million worldwide, not only affects
the afflicted individual but also the family and friends and at times the
entire community [1,2].

Although our understanding of the highly complex neurobiological
circuitry of mood regulation remains far from complete, it is known that
the symptoms of depression are diverse and vary from patient to pa-
tient. In addition, a number of drugs developed over the past 6 decades
such as, tricyclic antidepressants (TCAs), monoamine oxidase inhibitors
(MAOIs), norepinephrine reuptake inhibitors (NRIs), and selective
serotonin reuptake inhibitors (SSRIs) have offered significant relief to at

least some of the patients [1].These medications, however, based on
biogenic amine theory of depression, which posits that a decrease in
these neurotransmitters is the primary cause of the disorder, have
several major drawbacks. These include: limited efficacy, delayed onset
and various undesirable side effects [3], some of which may be per-
sistent [4]. Hence more rapid onset antidepressants with wider efficacy
and lower side effects are urgently needed.

The search for such compounds is facilitated by availability of
various models of depression, including the non-induced and treatment-
resistant Wistar Kyoto (WKY) rat model. WKY rats, an inbred stain,
initially developed as a normotensive control for the spontaneously
hypertensive rats [5], were later found to demonstrate exaggerated
immobility in the forced swim test (FST), a measure of helplessness or
depressive-like behavior [6]. Moreover, it was found that these rats are
irresponsive to SSRIs, and hence may be considered as a model of
treatment resistant depression [7,8].

Recent elucidation of significant contribution of neurotrophic
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factors and inflammatory processes in mood regulation/dysregulation,
has pointed new approaches in development of more effective anti-
depressants [9–11]. In this regard, several natural and synthetic com-
pounds with anti-inflammatory properties and ability to increase neu-
rotrophic factors, particularly brain-derived neurotrophic factor
(BDNF) have been proposed as potential novel antidepressants
[9,11,12].

The C-terminal domain of heavy chain of tetanus toxin (Hc-TeTx) is
a nontoxic fragment of TeTx with demonstrated capacity to protect
against cell death induced by a variety of neurotoxins including me-
thamphetamine [13–18]. Indeed, potential usefulness of peripheral
administration of Hc-TeTx in preventing damages in neurodegenerative
models such as amyotrophic lateral sclerosis, ischemia, spinal cord in-
jury and more recently in Parkinson’s disease (PD) have been reported
[19]. Since a strong association between neurodegenerative diseases
(e.g. PD) and neuropsychiatric disorders (e.g. depression) in terms of
neurobiological substrates as well as drug treatment has been indicated
[20], we undertook this study to investigate the potential anti-
depressant effects of Hc-TeTx in an animal model of depression.
Moreover, we hypothesized that any potential antidepressant effect of
Hc-TeTx will be associated with an increase in BDNF but a decrease in
TNF-alpha in the hippocampus and the frontal cortex, two areas in-
timately associated with mood regulation [21,22].

Adult male WKY rats (14–15 weeks old) and weighing about 250 g,
were obtained from Envigo (previously Harlan Laboratories,
Indianapolis, IN). Animals receiving the same treatment were pair-
housed through the duration of the experiment in a standard poly-
propylene shoebox cages (42× 20.5× 20 cm) on chip bedding.
Animals were subjected to a 1-week acclimatization period upon their
arrival, during which they were handled daily to minimize any hand-
ling related stress. Throughout the study, with the exception of beha-
vioral tests, animals had free access to food (Harlan Tek Lab) and water.
The room was maintained at 24–26°C at 55–66% relative humidity, on
a reverse light cycle (lights on 7:00 PM –7:00 AM) to allow convenient
behavioral evaluations of the animals during their active period.
Acclimatization to reversed dark cycle was done over a one-week
period where the light hours were shifted by approximately 2 h daily.
All behavioral testing and injections occurred between 8:00 A.M. and
12:00 P.M. during the animal's active phase as described previously
[23–25]. All experiments were carried out in accordance with NIH
guidelines, as approved by the Institutional Animal Care and Use
Committee of the Howard University.

Animals were divided into three groups (n=6/group) and received
intramuscular (i.m.) injection of either saline (control) or 20, 40, or
60 μg/kg dose of Hc-TeTx. The injection was into the gastrocnemius
muscle. Hc-TeTx fragment was synthesized as described in detail pre-
viously [19,26]. The Hc-TeTx solution was prepared by dissolving 1mg
of lyophilized Hc-TeTx in 1mL of isotonic saline solution, followed by
serial dilutions to obtain a final concentration of 20, 40 or 60 μg/
100 μL. The volume of injection was 400 μL/kg. Hence each animal
received approximately 100 μL of saline or the drug. These doses were
chosen based on previous studies where significant motor improvement
was observed with such dose range [19].

Approximately 24 h after the last injection, animals were tested in
an open-field activity monitoring cage (27×27×20.3 cm, Med
Associates, Inc., St. Albans, VT) for 5min where ambulatory counts
representing the number of infrared beam interruptions were recorded
[27]. This behavior was assessed to determine if drug treatment af-
fected general locomotor behavior, which might impinge on forced
swim test immobility assessment [25,27].

Immediately following the open field activity test each animal was
evaluated for its behavior (immobility) in FST [25, 27]. Briefly, each rat
was placed in a Pyrex cylinder pool measuring 17 cm in diameter and
60 cm in height for 5min. The cylinder was filled with 30 cm water
(25 ± 1°C) to ensure that the animals could not touch the bottom of
the container with their hind paws or their tails. The FST activity was

video recorded for subsequent analysis. The rat was removed after
5min, dried, and placed in its home cage. A time sampling scoring
technique was used whereby the predominant behavior in each 5-s
period of the 300- s test was recorded. Inactivity (immobility) and ac-
tivity (swimming) were distinguished as mutually exclusive behavioral
states. Swimming behavior was defined as movement (usually hor-
izontal) throughout the cylinder. Immobility was defined when no ad-
ditional activity was observed other than that required to keep the rat's
head above the water [25,27].

Note: Since behavioral effects were observed a day after a single Hc-
TeTx injection, both OFLA and FST were repeated after one week of rest
and again after two weeks of rest to determine the lasting effects of the
single drug injection on these parameters.

A separate group of rats were treated with the 60 μg/kg dose of Hc-
TeTx as this dose had resulted in the highest behavioral (anti-
depressant) effect. Animals were sacrificed by decapitation, approxi-
mately 24 h later to coincide with the time of behavioral observation.
No behavioral tests were done in these animals. This was to avoid po-
tential confounding effects of swim test on neurochemical parameters.
Brains were quickly removed, frozen on dry ice and stored at -80°C until
dissection for BDNF and TNF-alpha measurement. The hippocampus
(bilateral) and frontal cortex were dissected as previously described
[22].

Western blot was performed as described in detail previously
[22,25]. Briefly, homogenate of the dissected hippocampus (bilateral)
were made in lysis buffer (10mM Tris-buffer, 5 mM EDTA, 150mM
NaCl, 0.5% Triton X-100 (v/v) with protease inhibitors (Sigma-Aldrich,
St. Louis, MO). The protein concentration in each sample was de-
termined using a BCA protein Assay Kit (Pierce Biotechnology Inc., IL),
and equal protein amount (as confirmed by β-actin) was loaded in each
immunoblot. The proteins were separated using 12% SDS-PAGE gel and
transferred onto a nitrocellulose membrane. The membranes were
blocked with a blocking reagent (5% nonfat milk in TBS buffer) for
1⁄2 h and incubated at 4°C overnight with the primary antibody against
BDNF (1:500, Santa Cruz Biotechnology Inc., Santa Cruz, CA) or TNF-
alpha (1:500, Santa Cruz Biotechnology). The membranes were washed
with TBST (TBS buffer with 1% Tween-20) and blocked with the
blocking reagent. Membranes were then incubated for 1 h at room
temperature in Goat Anti- Rabbit-HRP conjugated secondary antibody
(1:3000 in TBS, Bio-Rad Laboratories, CA). The membranes were then
washed in the TBST washing solution and then visualized using en-
hanced chemiluminescent kits (Bio-Rad Laboratories, CA). The in-
tensity of the protein bands on the gel was quantified using ChemiDoc
XRS system (Bio-Rad Laboratories, CA).

Statistical differences between treatment groups were determined
by one-way analysis of variance (ANOVA) followed by post-hoc
Newman-Keuls Multiple comparison test to determine which groups
differed. Significant difference was set a priori at p<0.05. Data were
analyzed using Graphpad Prism6 (Graphpad Software, Inc., San Diego,
CA, USA).

Single treatment with Hc-TeTx resulted in a dose-dependent de-
crease in FST immobility when tested 24 h after the injection [F
(328)= 6.38, p < 0.01]. Thus, the 60 μg/kg dose caused the highest
decrease (60% p < 0.01), the 40 μg/kg (51% p < 0.01) and the
20 μg/kg (21% p < 0.05) in immobility compared to the control
(Fig. 1A). Open field locomotor activity was not altered by any treat-
ment (Fig. 1B), suggesting that the treatment effects of Hc-TeTx on FST
were independent of any effects on general locomotion.

Based on these results, we used the highest dose of 60 μg/kg to
evaluate the neurochemical changes associated with this behavioral
effect.

One week after the last single injection, the effect of 40 and 60 μg/
kg doses were still evident on immobility scores [F(328)= 5.96,
p < 0.01]. Hence, with the 40 μg/kg dose, there was 29% decrease in
immobility (p < 0.05) and with 60 μg/kg dose, there was 39% de-
crease (p < 0.01) (Fig. 2A). After 2 weeks of rest the effect of 40 μg/kg
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dose was totally absent (Fig. 2B). Although there was still a 13% de-
crease in immobility score after the 60 μg/kg dose, this effect was not
statistically significant [F(328)= 0.68, p > 0.64].

Western blot analysis showed that acute treatment with the 60 μg/
kg dose of Hc-TeTx resulted in increases in BDNF levels in the hippo-
campal (2.6-fold, p < 0.01) and the frontal cortex (2.1-fold p < 0.01)
24 h after a single administration (Fig. 3). An opposite trend was ob-
served in terms of TNF-alpha levels in both areas. Hence, 60 μg/kg dose
of Hc-TeTx resulted in decreases in TNF-alpha levels in the hippo-
campal (2.5-fold, p < 0.01) and the frontal cortex (5-fold p < 0.01)
24 h after a single administration (Fig. 4).

The results of the current study suggest antidepressant-like effects of

an acute dose of Hc-TeTx in an animal model of treatment-resistant
depression. This effect was long lasting as the behavioral despair re-
flected in the immobility scores of the FST was still down one week
after the injection. Since potential utility of Hc-TeTx in movement
disorders associated with PD has been verified by a number of pre-
clinical studied [19,28] and co-morbidity of depression with PD is also
well established [29], it may be concluded that Hc-TeTx would be of
specific benefit in such co-morbid condition. This contention is further
supported by the findings that neuroprotectants in general, are likely to
have antidepressant effects as well [20].

The results also implicate a role for the neurotrophic factor, BDNF
and at least one of the pro-inflammatory cytokines, TNF-alpha in

Fig. 1. Effects of various doses of Hc-TeTx on immobility in the forced swim test (1A) and open field locomotor activity (1B) in WKY rats. The animals were tested
24 h after the single i.m. injection. Values are mean ± SEM. N=6/group. *p < 0.05, **p < 0.01 compared to control.

Fig. 2. Effects of various doses of Hc-TeTx on immobility in the forced swim test in WKY rats. The animals were tested one week (2A) and two weeks (2B) after the
single i.m. injection.
Values are mean ± SEM. N=6/group. *p < 0.05, **p < 0.01 compared to control.
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antidepressant effects of Hc-TeTx. This is due to the fact the levels of the
BDNF in both hippocampus and the frontal cortex were elevated by Hc-
TeTx, whereas the levels of TNF-alpha were reduced in both these areas
a day after the drug injection, concomitant with the observed anti-
depressant effects.

Although current approved antidepressants are primarily based on
the monoaminergic hypothesis, which posits that a decrease in the le-
vels of neurotransmitters such as norepinephrine, dopamine and ser-
otonin (5 H T) in the brain, is responsible for mood dysregulation, the
delay in onset of action of such antidepressants and their limited effi-
cacy has shifted the focus to other potential biological substrates. In this
regard, a role for neurotrophic factors, particularly hippocampal and
also frontal cortical BDNF and more recently, dysregulation of immune
system, reflected in elevated levels of pro-inflammatory cytokines such
as TNF-alpha have gained substantial traction in the field. Thus, it is
now hypothesized that the delay in onset of action of current anti-
depressants might be due to the delay in elevation of the neurotrophic
factors. Whether a delayed anti-inflammatory effect might also be
playing a role in late onset of classical antidepressants is not known at
this time. It is of relevance to note that es-ketamine, a ketamine analog,
which was very recently approved as a quick acting antidepressant, has
its proposed mechanism in elevation of hippocampal BDNF [30]. In-
terestingly, ketamine has also been shown to have anti-inflammatory
effects as well [31].

It would be of significant clinical relevance to investigate whether
long lasting effects of Hc-TeTx, is solely due to its potential interactions
with aforementioned mechanisms or may also involve some effects on
biogenic amines. In regard to latter hypothesis, interaction of Hc-TeTx

with 5 H T has been noted [32]. Thus, inhibition of both basal and
stimulated serotonin uptakes in primary neuronal cultures were de-
monstrated by Hc-TeTx [32]. In addition, it is necessary to delineate
potential sex differences in response to the effects of Hc-TeTx as gender-
dependent variation in depression and response to antidepressants is
well documented [33,34].

In summary, the results of the current study suggest potential use-
fulness of Hc-TeTx as a novel intervention in depression-PD co-morbid
condition.
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